Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12104/107283
Título: Time Series Smoothing by Penalized Least Squares with Applications
Palabras clave: MATEMÁTICAS > Análisis numérico;Análisis numérico;Ciencias naturales y matemáticas > Matemáticas > Probabilidades y matemática aplicada > Matemática Estadística
Editorial: Editorial Universidad de Guadalajara
Descripción: This text presents some useful and easy-to-use techniques to estimate trends of time series data without imposing rigid distributional or other typeof assumptions. These techniques offer flexibility, particularly for estimating trends routinely and massively. The book provides some generalizations to the ideas embodied in the time series smoothing problem as orvinally proposed by Víctor M. Guerrero. These generalizations provide some innovative and straightforward ways to calculate trends. The data analyst can objectively choose the desired smoothness, thus enabling camparisons between trends with the same smoothness level for different sample sizes or periodicity of observation. The value added of this book is that it offers the analyst a remarkable flexibility to estimate trends.
URI: https://hdl.handle.net/20.500.12104/107283
metadata.dc.image: https://simehbucket.s3.amazonaws.com/images/ac01c4874a1d5c9576b4499e3b30cf14-medium.jpg
Aparece en las colecciones:Editorial Universidad de Guadalajara

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Los ítems de RIUdeG están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.