Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12104/81211
Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.advisorZaldívar Navarro, Daniel
dc.contributor.advisorCuevas Jiménez, Erik Valdemar
dc.contributor.authorAvalo Álvarez, Omar
dc.date.accessioned2020-07-26T18:49:59Z-
dc.date.available2020-07-26T18:49:59Z-
dc.date.issued2019-01-10
dc.identifier.urihttps://hdl.handle.net/20.500.12104/81211-
dc.identifier.urihttps://wdg.biblio.udg.mx
dc.description.abstractThe area of research and development in the field of engineering has been growing in recent years, especially those related to renewable energy and energy applications due to their environmental repercussions. The main objective of these applications is reducing the costs of operation, increase the efficiency of certain elements, reduce the losses of energy, and so on. On the other hand, the systems identification is an area that has attracted the attention in several fields of engineering due they can emulate real-world plants and processes which are of non-linear nature. So that, the correct optimization in the energy applications and the accurate approximation in the systems identifications become in a really complex task. Evolutionary computational techniques (ETC) are techniques developed to solve optimization problems competitively, especially where the error surface generated by a particular problem tends to multimodal nature, in which traditional optimization techniques are unable to determine the global optimal. In this work, several ETCs are used in energy applications such as Induction motor parameter estimation, Distribution networks, Solar cells parameters estimation, and for the system identification of Hammerstein models. All experiments reported in this work, are validated using statistical tools to corroborate the results.
dc.description.tableofcontents1. Introduction. 2. Induction Motor Parameter Identification Using a Gravitational Search Algorithm. 2.1 Introduction. 2.2 Gravitational Search Algorithm. 2.3 Identification Problem Formulation. 2.3.1 Approximate Circuit Model. 2.3.2 Exact Circuit Model. 2.4 Experimental Results. 2.4.1 Performance Evaluation with Regard to Its Own Tuning Parameters. 2.4.2 Induction Motor Parameter Identification. 2.4.3 Statistical Analysis. 2.5 Conclusions. 3. An Improved Crow Search Algorithm Applied to Energy Problems. 3.1. Introduction. 3.2. Crow Search Algorithm (CSA). 3.3. Improved Crow Search Algorithm (ICSA). 3.3.1. Dynamic Awareness Probability (DAP). 3.3.2. Random Movement—Lévy Flight. 3.4. Motor Parameter Estimation Formulation. 3.5. Capacitor Allocation Problem Formulation. 3.5.1. Load Flow Analysis. 3.5.2. Mathematical description. 3.5.3. Sensitivity Analysis and Loss Sensitivity Factor. 3.6. Experimental results. 3.6.1. Motor Parameter Estimation Test. 3.6.2. Capacitor Allocation Test. 3.6.3. 10-Bus System. 3.6.4. 33-Bus System. 3.7 Statistical Analysis. 3.8. Conclusions. Appendix A. Systems Data. 4. A comparative study of Evolutionary computation techniques for solar cells parameter estimation. 4.1 Introduction. 4.2 Evolutionary computation techniques. 4.2.1 Artificial Bee Colony (ABC). 4.2.2 Differential Evolution (DE). 3.2.3 Harmony Search (HS). 4.2.4 Gravitational Search Algorithm (GSA). 4.2.5 Particle swarm Optimization (PSO). 3.2.6 Cuckoo Search (CS). 4.2.7 Differential Search Algorithm (DSA). 4.2.8 Crow Search Algorithm (CSA). 4.2.9 Covariant Matrix Adaptation with Evolution Strategy (CMA-ES). 4.3 Modeling of solar cells. 4.3.1 Single diode model (SDM). 4.3.2 Double diode model (DDM). 4.3.3 Three diode model (TDM). 3.3.4 Solar cells parameter identification as an optimization problem. 4.4 Experimental results. 4.5 Conclusions. 5. Nonlinear system identification based on ANFIS-Hammerstein model using Gravitational search algorithm. 5.1. Introduction. 5.2. Background. 5.2.1 Hybrid ANFIS models. 5.2.2 Adaptive Nuero-fuzzy Inference System (ANFIS). 5.2.3 Gravitational Search Algorithm (GSA). 5.3. Hammerstein model identification by using GSA. 5.4. Experimental results. 5.4.1 Experiment I. 5.4.2 Experiment II. 5.4.3 Experiment III. 5.4.4 Experiment IV. 5.4.5 Experiment V. 5.4.6 Experiment VI. 5.4.7 Experiment VII. 5.4.8 Statistical analysis. 5.5. Conclusions. References.
dc.formatapplication/PDF
dc.language.isospa
dc.publisherBiblioteca Digital wdg.biblio
dc.publisherUniversidad de Guadalajara
dc.rights.urihttps://www.riudg.udg.mx/info/politicas.jsp
dc.subjectComputo Evolutivo
dc.subjectEnergia
dc.subjectSistemas.
dc.titleDISEÑO Y EXPERIMENTACIÓN DE TÉCNICAS DE COMPUTO EVOLUTIVO EN ENERGÍA E IDENTIFICACIÓN DE SISTEMAS
dc.typeTesis de Doctorado
dc.rights.holderUniversidad de Guadalajara
dc.rights.holderAvalo Álvarez, Omar
dc.coverageGUADALAJARA, JALISCO
dc.type.conacytDoctoralThesis-
dc.degree.nameDOCTORADO EN CIENCIAS DE LA ELECTRONICA Y LA COMPUTACION CON ORIENTACIONES-
dc.degree.departmentCUCEI-
dc.degree.grantorUniversidad de Guadalajara-
dc.rights.accessopenAccess-
dc.degree.creatorDOCTOR EN CIENCIAS DE LA ELECTRONICA Y LA COMPUTACION CON ORIENTACIONES-
Aparece en las colecciones:CUCEI

Ficheros en este ítem:
Fichero TamañoFormato 
DCUCEI10013.pdf
Acceso Restringido
126.24 kBAdobe PDFVisualizar/Abrir    Request a copy


Los ítems de RIUdeG están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.