Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12104/109925
Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.advisorGómez Barba, Leopoldo
dc.contributor.advisorMeda Campaña, María Elena
dc.contributor.advisorJiménez Meza, Ana Rosa
dc.contributor.authorBecerra Gaviño, Gustavo
dc.date.accessioned2025-09-01T22:42:33Z-
dc.date.available2025-09-01T22:42:33Z-
dc.date.issued2024-12-11
dc.identifier.urihttps://wdg.biblio.udg.mx
dc.identifier.urihttps://hdl.handle.net/20.500.12104/109925-
dc.description.abstractThe application of quantum principles in computing has garnered interest since the 1980s. Today, this concept is not only theoretical, but we have the means to design and execute techniques that leverage the quantum principles to perform calculations. The emergence of the quantum walk search technique exemplifies the practical application of quantum concepts and their potential to revolutionize information technologies. It promises to be versatile and may be applied to various problems. For example, the coined quantum walk search allows for identifying a marked item in a combinatorial search space, such as the quantum hypercube. The quantum hypercube organizes the qubits such that the qubit states represent the vertices and the edges represent the tran sitions to the states differing by one qubit state. It offers a novel framework to repre sent k-mer graphs in the quantum realm. Thus, the quantum hypercube facilitates the exploitation of parallelism, which is made possible through superposition and entangle ment to search for a marked k-mer. However, as found in the analysis of the results, the search is only sometimes successful in hitting the target. Thus, through a meticulous examination of the quantum walk search circuit outcomes, evaluating what input-target combinations are useful, and a visionary exploration of DNA k-mer search, this work opens the door to innovative possibilities, laying down the groundwork for further re search to bridge the gap between theoretical conjecture in quantum computing and a tangible impact in bioinformatics.
dc.description.tableofcontentsTABLEOFCONTENTS RESUMEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii ACKNOWLEDGEMENT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii LISTOFFIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii LISTOFTABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii LISTOFTERMSANDABBREVIATIONS. . . . . . . . . . . . . . . . . . . ix 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 OriginalContributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 JournalCitationReviewsArticle . . . . . . . . . . . . . . . . . . 2 1.2.2 InternationalCongressPresentation . . . . . . . . . . . . . . . . 2 1.3 RelatedFields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3.1 Bioinformatics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3.2 Computing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3.3 QuantumComputing . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Thiswork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4.1 ProblemStatement . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4.2 ResearchMethodology . . . . . . . . . . . . . . . . . . . . . . . 5 1.4.3 ResearchQuestion . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4.4 GeneralObjective . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4.5 Hypothesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4.6 Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Literature 7 2.1 DNA2bitEncoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 K-merSequencing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 iv 2.3 QuantumComputing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.1 Whyquantumcomputing? . . . . . . . . . . . . . . . . . . . . . 8 2.3.2 QuantumMechanicsinQuantumComputing . . . . . . . . . . . 9 2.3.3 Thequbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.4 MeasuringQubits . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.5 QuantumGates . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.6 QuantumRegisters . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.7 QuantumAlgorithms . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 QuantumSoftwareStacks . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5 IBMQuantumPlatform. . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.6 TheCoinedQuantumWalkSearch . . . . . . . . . . . . . . . . . . . . . 16 2.7 Puttingittogether . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 MaterialsandMethods 19 3.1 ResearchandDevelopmentApproach . . . . . . . . . . . . . . . . . . . 19 3.1.1 AgileMethodologies . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.2 AgileCulture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.3 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.4 AgileWorkItems . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.5 DevSecOps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 InformationTechnologyArchitectureMethods . . . . . . . . . . . . . . . 27 3.2.1 GarageMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.2 SystemsContextDiagram. . . . . . . . . . . . . . . . . . . . . . 30 3.2.3 QuantumSoftwareStack . . . . . . . . . . . . . . . . . . . . . . 30 3.3 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.1 ContainerizedEnvironment . . . . . . . . . . . . . . . . . . . . . 32 3.3.2 ImporttheQuantumframework. . . . . . . . . . . . . . . . . . . 32 3.3.3 CoinOperator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.4 ShiftOperator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.5 Markinga2-mertobefound . . . . . . . . . . . . . . . . . . . . 33 3.3.6 InitializationString . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3.7 InitializationEffect . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4 TheHypercube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 v 4 ExperimentsandResults 38 4.1 Resultsorganization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5 Discussion 45 6 Conclusion 47 Appendices AppendixA SupportingMaterials 49 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
dc.formatapplication/PDF
dc.language.isoeng
dc.publisherBiblioteca Digital wdg.biblio
dc.publisherUniversidad de Guadalajara
dc.rights.urihttps://www.riudg.udg.mx/info/politicas.jsp
dc.subjectK-Mer Graph
dc.subjectCoined Quantum Walk
dc.subjectQuantum Search
dc.subjectQuantum Computing With Python
dc.subjectQiskit
dc.subjectQuantum Register Initialization
dc.titleThe Quantum Hypercube as a K-mer Graph.
dc.typeTesis de Doctorado
dc.rights.holderUniversidad de Guadalajara
dc.rights.holderBecerra Gaviño, Gustavo
dc.coverageZAPOPAN, JALISCO
dc.type.conacytdoctoralThesis
dc.degree.nameDOCTORADO EN TECNOLOGIAS DE INFORMACION
dc.degree.departmentCUCEA
dc.degree.grantorUniversidad de Guadalajara
dc.rights.accessopenAccess
dc.degree.creatorDOCTOR EN TECNOLOGIAS DE INFORMACION
dc.contributor.directorBarbosa Santillán, Liliana Ibeth
Aparece en las colecciones:CUCEA

Ficheros en este ítem:
Fichero TamañoFormato 
DCUCEA10176FT.pdf3.04 MBAdobe PDFVisualizar/Abrir


Los ítems de RIUdeG están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.